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Abstract

Several person-fit statistics have been proposed to detect item score patterns that do

not fit an item response theory model. To classify response patterns as not fitting a model

a distribution of a person-fit statistic is needed. Recently, the null distributions of several

fit statistics have been investigated using conventional administered tests. For computerized

adaptive testing (CAT), however, less is known about the distribution of fit statistics. In this

study a three part simulation study was conducted. First, the theoretical distribution of the often

used 1z-statistic across 0-levels in a conventional testing and CAT environment was investigated,

where 0 and 0 were used to calculate /z. Also, the distribution of a statistic /:, that is corrected

for the error in 0, proposed by Snijders (1998), was investigated in a conventional testing and

CAT environment. Second, simulating the distribution of 1, for the 2PLM for conventional

administered tests was investigated. Two procedures for simulating the distribution of lz and

lz in a CAT were examined: (1) item scores were simulated with a fixed set of administered

items, and (2) item scores were generated according to a stochastic design, where the choice of

the administered item i + 1 depended on the responses to previous administered items. Third,

a power study was conducted to compare the detection rates of 1; with /z for conventional

tests. Results indicated that the distribution of /z differed from the theoretical distribution in a

conventional and CAT environment. In a conventional testing situation, the distribution of1; was

in concordance with the theoretical distribution. However, for a CAT the distribution differed

from the theoretical distribution. In the context of conventional testing, simulating the sampling

distribution of /z for every examinee, based on b, resulted in an appropriate approximation of

the distribution. However, in a CAT environment, simulating the sampling distributions of both

lz and 1; was problematic.
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Simulating the Null Distribution - 2

Simulating the Null Distribution of Person-Fit Statistics

for Conventional and Adaptive Usts

Item responses that do not fit the assumed item response theory (IRT) model may cause

the latent trait value 0, to be inaccurately estimated. Possible interpretations for nonfitting test

behavior include test anxiety, guessing, cheating on achievement tests, or response distortion

as a result of faking the answers on personality inventories (Zickar & Drasgow, 1996). Person-

fit statistics have been proposed to detect nonfitting score patterns (e.g., Drasgow & Levine,

1986; Meijer, 1994; Tatsuoka, 1984), and the effectiveness of these statistics to detect nonfitting

response vectors has been investigated (e.g., Drasgow, Levine, & McLaughlin, 1987, 1991).

However, most person-fit studies concentrated on conventionally administered tests, or paper-

and-pencil (P&P) tests. With the increasing use of computerized adaptive tests (CAT), additional

research is needed with respect to the application of person-fit statistics using these types of

tests.

A few studies investigated the usefulness of person-fit analysis in CAT. Candell (1988;

cited in Drasgow, Levine, and Zickar, 1996) used optimal person-fit statistics in which the

likelihood of a normal responding person was compared. with the likelihood under an aberrant

model to study the ability of a likelihood ratio test to identify simulated aberrant examinees.

Although this approach is interesting because it has maximum power against a specified

alternative, the drawback is that for other types of aberrant responding the power is low.

Nering (1997) examined the distribution of two fit statistics, /z (Drasgow, Levine, &

Williams, 1985), a standardized version of the log-likelihood statistic /0 proposed by Levine

and Rubin (1979), and ECI4z (Tatsuoka, 1984), in a CAT environment. Nering found that the

empirical distribution was dramatically different from the theoretical distribution. As a result,

Nering concluded that 'when attempting to classify a response vector as model divergent (...)

cutscores may have to be based on such factors as item pool size, item pool discrimination, and

so forth'. An alternative to using a critical value derived from a theoretical distribution is to

simulate for each examinee a distribution of a person-fit statistic based on the characteristics

of the item bank and the estimated latent trait value of 0, denoted as B. Using the simulated

distribution it can be determined how likely a response vector is under the IRT model.

. Snijders (1998) propoSed to use an alternative standardization of the 10-statistic when

was replaced by 0. This statistic is denoted here as l2. In a small simulation study Snijders

(1998) investigated the distribution of 1: in a conventional testing environment and found that

the empirical distribution was close to the theoretical distribution.

5



Simulating the Null Distribution 3

The purpose of the present study was to extend the Nering study and the Snijders study

by examining the distribution of lz and 1: in a conventional testing and CAT environment and to

investigate two different ways to simulate the distribution of /0, /z, and lZ. Besides, the detection

rate of 1, and 1.; to detect nonfitting score patterns for conventional tests was investigated.

Person-Fit Analysis

In person -fit analysis, several fit statistics have been used in the context of the one,

two-, and three-parameter logistic model (1-, 2-, 3PLM) (Hambleton & Swaminatan, 1985, pp.

35-48). In this study we use the 2PLM because it is less restrictive with respect to empirical

data than the one-parameter logistic model and it does not have the estimation problems of the

guessing parameter in the three parameter logistic model (e.g., Baker, 1992, pp.109-112). The

2PLM has shown to have a reasonable fit to several achievement and personality data (e.g.,

Reise & Waller, 1990; Zickar & Drasgow, 1996).

Let X, be the binary (0, 1) response to item i, where 1 denotes a correct or keyed

response, and 0 denotes an incorrect or not keyed response. Further, let ai denote the item

discrimination parameter and b, the item difficulty p6xameter, then the probability of correctly

answering an item according to the 2PLM can be written as

exp [ai (0 bi)]
Pi (0) = exp[cti (0 bi)]

(1)

Levine and Rubin (1979) proposed the log-likelihood statistic, denoted as /0, as a measure of

departure from the logistic IRT models. /0 can be written as

/0 = ln [11 Pi (0
ix

I=11 (2)

Because 10 is confounded with B, Drasgow, Levine and Williams (1985) proposed to use the

standardized version of lo, denoted as lz. This statistic equals

10 E (10)

1 z =
[var (10)] 1

(3)

where E (lo) and var (10) denote the expectation and variance of /0, respectively. These
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Simulating the Null Distribution - 4

quantities are given by

E (10) = E {Pi (0) In [Pi (0] + (1
i=1

(0)) ln [1 (0)]} ; (4)

and

var (/0) = P, (e) (1 P, (0) (5)[In 17?.012 .

,=1

For classifying a response pattern as aberrant, an important tool is the probability of

exceedance or significance probability. Because large negative values of I z indicate aberrance,

the significance probabilities in the left tail of the distribution are of interest. Let t be the

observed value of the person-fit statistic T. Then, the significance probability is defined as

the probability under the sampling distribution that the value of the test statistic is smaller than

the observed value of the statistic: p* = P (T < t). The value of a statistic with p* = a will

be denoted as the critical value at significance level a. For example, for a standard normally

distributed statistic the critical value at level a = 0.05 is 1.65.

Drasgow et al. (1985) purported that, in the context of conventional testing or paper-

and-pencil (P&P) testing, I z was distributed standard normal for long tests (tests longer than say

80 items). However, several studies (e.g., Molenaar & Hoijtink, 1990; Meijer & Nering, 1997)

showed that I, was not standard normally distributed for tests of realistic length (20 60 items).

It was found that the distribution of I z was negatively skewed and that the normal approximation

was inaccurate, especially in the tails of the distribution. As an alternative, Molenaar and

Hoijtink (1990) propcised for the Rasch model three approximations to the distribution of to

conditional on the total score: using (1) complete enumeration, (2) Monte Carlo simulation

and (3) a chi-square distribution, where the mean, standard deviation, and skewness of /0 were

taken into account. Complete enumeration is suitable for very short tests. For tests of moderate

length, a chi-square distribution was proposed for /0, conditional on the total score. For very

long tests, an accurate calculation of the moments, needed for the chi-square approximation,

is difficult and as an alternative, Monte Carlo simulation was applied. In the Rasch model the

total score is a sufficient statistic for 0; for the 2PLM this is not the case, that is, the distribution

of a person-fit statistic conditional on the total score is dependent on 0. As an alternative 0 can

be used in the case of the 2PLM or 3PLM. However, care should be taken in doing this, because

as Molenaar and Hoijtink (1990) noticed the statistical results on the distribution of a person-fit
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Simulating the Null Distribution - 5

statistic may change when substituting 8 for 8.

Snijders (1998; see also Molenaar and Hoijtink, 1990) showed that, when the true

person parameter is replaced by an estimate, the variance of the person-fit statistic decreased.

When this decreased variance is not taken into account, this will lead to a conservative

classification of nonfitting response patterns. Snijders derived the asymptotic distribution for

several person-fit statistics, in which 0 was replaced by 0. He showed that the asymptotic

distribution of

1;
\FIT, (e)

10 E (lo) + cn (b) ro (b)
(6)

is standard normal, where, for the 2PLM and for the weighted maximum likelihood estimator

(Warm, 1989)

ai bi) Pt! CO

tl ail': (0)
i =1

E 4Pi CO) [1 (0)] [1 2Pi (0)]
i=i

2 t 4P, (k) [1 P, (0]

721

[ai
1)1) alcn (b)] 137 (0 [1 (0) ]

i =1

(7)

(8)

(9)

where PI (0) = apt (e) 180. See Appendix A for more details. Snijders performed a simulation

study for relatively small conventional tests of 8 and 15 items, fitting the 2PLM, and using

maximum likelihood estimation. The results showed that the approximation is satisfactory for

a = 0.05 and a = 0.10, but that it was too liberal for smaller values of a.

Person Fit in CAT

Nering (1996, 1997) examined the distribution of 1, within CAT by evaluating the

first four moments (mean, standard deviation, skewness, and kurtosis) of the distribution. His

results were in concordance with the results using conventional tests: the exact distribution of 12

was different from the standard normal distribution. An important finding was that the normal

approximation in the tails of the distribution was inaccurate: using a critical value of 1.65
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Simulating the Null Distribution - 6

resulted in a conservative classification of aberrant response patterns: = P (lz < 1.65) <<

0.05. On the basis of these results it can be concluded that the standard normal distribution is

not useful to obtain a critical value in CAT. A possible solution for determining significance

probabilities in CAT may be to approximate the distribution of a statistic by using simulation

methods.

Simulating Distributions of Person-Fit Statistics in CAT

The significance probabilities can be determined by simulating the distribution of a

person-fit statistic T, for example lz or /:. This can be realized in at least two ways. One

possibility is to determine the distribution of T by drawing a large number of 0-values from the

standard normal distribution, each 0-value representing a person responding to the test. Then,

item scores are simulated for each 0-value, according to the assumed IRT model and the CAT:

procedure, and the value of T for each pattern is calculated; the T-values of these patterns

constitute the simulated distribution based on the characteristics of the item bank. Another

possibility is to simulate a distribution of T for each 0-value; that is, given 0, a large number

of response patterns are simulated and for each pattern the T-value is calculated. So, now a

distribution is simulated, based on the item bank and 0. Based on this distribution a critical

value at level a can be determined.

The first method results in using one critical value for all simulees, whereas the second

method will probably result in using different critical values at different 0-values. When the

distribution of T is the same across all 0-levels, the first method will result in an appropriate

simulated distribution.

Using the second method, the distribution of T can be simulated using a fixed sequence

of items (test design) in which for each 0-value a large number of response vectors are simulated

given the observed test design. Thus, each response vector consists of respcinses to the same

items. However, an important aspect when simulating the distribution of a statistic is the

stochastic process of item selection in a CAT (Glas, Meijer, & van Krimpen, 1997): in a CAT,

the test design may be different for each simulee. To take this stochastic nature into account,

the distribution can be simulated using a stochastic test design in which for each 0-value a large

number of adaptive response patterns are simulated with, in principle, different test designs.

Let the vector d denote the test design, that is, a vector of the numbers of administered

items in CAT, and T (X) a statistic of the observed response vector X = (X1, , Xk) of a

test with k items. In CAT, item selection is based on responses to previous administered items

which are dependent on the ability of the examinee. Therefore, X is conditional on d and 0,

9



Simulating the Null Distribution - 7

and a function of X, for example the statistic T (X) = T, is also conditional on d and 0. Thus,

the distribution of T, conditional on d and 0, is defined as

f (TI d,0) (10)

To obtain the unconditional distribution of T at a fixed 0-level, Equation 10 can be multiplied

by the probability distribution of the design d, which results in

f (T,d1e) = f (di f (TI a, o). (11)

Comparing the values of the statistic across examinees with the same 0 is difficult

in a CAT environment, because in principle examinees respond to different tests. However,

comparing significance probabilities of the observed value of the statistic across examinees is

possible. For determining the significance probability, the distribution of a statistic, conditional

on 0, can be simulated for a fixed test design (Equation 10) or a stochastic test design (Equation

11). In both approaches the distribution can be approximated by replicating the test n times.

Purpose of the Study

This study was designed to investigate (1) the distribution of 1, and 1: across different 0-

levels and the influence of estimation errors of 0 on the distribution of lz and 1: for conventional

testing (P&P) and in CAT (Study 1), (2) the influence of estimation errors of B on simulating

the distribution of 10 and lz for conventional tests and CAT, and the influence of the stochastic

nature of the test design in CAT (Study 2), and (3) the detection rate of lz and 1: for several types

of aberrant response behavior in a conventional testing situation (Study 3). This study thus both

extend the Nering (1997) and the Snijders (1998) study.

Study 1

In this study the distributions of lz and 1; were investigated in a conventional and CAT

situation. Nering (1997) examined the distribution of lz in a CAT environment by first drawing

10, 000 0-values from the standard normal distribution and then simulating adaptive response

vectors for each 0-value. For each response vector, 0 was used to determine the value of 1..

These 10, 000 values constituted the simulated distribution of I,. In this study, the simulated

distribution was determined by (1) drawing true 0 from a standard normal distribution, or (2)

1 0



Simulating the Null Distribution 8

fixing true 9 at different levels. In both (1) and (2), response vectors were generated and 0 was

estimated by 0; 9 was used to determine the value of lz and Doing so, the critical values

obtained by Nering can be compared with the critical values obtained when the distribution of

lz is simulated at a fixed 0-level. Finally, lz was also calculated using true 0, that is P (0) was

used to determine the value of 1,. This enables us to investigate the influence of estimation

errors in 0 on the distribution of lz. Note that 1: is only an appropriate standardization when

is used.

Method

P&P. Tests of 20, 50, and 80 items fitting the 2PLM were constructed, with ai

N(1; 0.2) and b, ti U( 3; 3); each test was fixed for all simulees. For each test, ten datasets

consisting of 10, 000 response vectors were constructed. Nine datasets were constructed at nine

different 0-levels: 0 = 2, 1.5, 1, 0.5, 0, 0.5, 1, 1.5, and 2; one dataset was constructed

where 10, 000 O's were drawn from a standard normal distribution.

First, for each response vector the values of lz and 1: were calculated using 0 and these

10, 000 values of lz and 1: were used to obtain the distribution of 1, and 1: for each dataset; 0 was

estimated using weighted maximum likelihood estimation (Warm, 1989); this estimator is less

biased than the maximum likelihood estimator, and also exists for patterns with only 1-scores

or only 0-scores. For all simulated distributions the critical values at level a were determined

and compared with the critical values at level a of the standard normal distribution, where

a = 0.01, 0.02, 0.03, 0.04, and 0.05. Furthermore, the first four moments (mean, standard

deviation, skewness, and kurtosis) of the simulated distribution of lz and 1: were computed and

compared with the moments of the standard normal distribution. Second, 1, was also calculated

using true 0 for each response vector to constitute the distribution of lz without presence of

estimation errors.

CAT. Ten datasets consisting of 10, 000 adaptive response patterns were constructed.

Nine datasets were constructed at nine different 0-levels: 0 = 2, 1.5, 1, 0.5, 0, 0.5, 1,

1.5, and 2; one dataset was constructed where 10, 000 O's were drawn from a standard normal

distribution.

A pool of 400 items fitting the 2PLM with a, N(1; 0.2) and b, U( 3; 3) was

used. An adaptive response pattern was simulated as follows. First, the true 0 of a simulee was

drawn from a standard normal distribution or was set to a fixed 0-level, dependent on the dataset

constructed. Then, the first item of the CAT selected was the item with maximum information

given 9 = 0. For this item, P (0), according to Equation 1 was determined. To simulate the
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answer (1 or 0), a random number y from the uniform distribution on the interval [0, 1] was

drawn; when y < P (0) the response to item i was set to 1 (correct response), 0 otherwise. The

first four items of the CAT were selected with maximum information for 0 = 0, and based on

the responses to these four items, 3 was obtained. The next item selected was the item with

maximum information given 3. For this item, P (0) was computed, a response was simulated,

0 was estimated and another item was selected based on maximum information given 3 at that

stage. This procedure was repeated until the asymptotic standard error of3 was 0.25; this is an

often used value, see for example DeAyala (1992) and Nering (1997). The asymptotic standard

error of 3 was determined by

-1/2

SE C O = [E ai2Pi (0) (1 P= (0))] , (12)

where the sum was across all administered items and P1(0) was defined by the 2PLM given in

Equation 1; the standard error was estimated by substituting 3 for O.

For each response vector the values of lz and 1: were calculated using 3 and these

10, 000 values of lz and /: were used to obtain the distribution of lz and 1; for each dataset.

Also, I, was calculated using true B for each response vector, to constitute the distribution of lz

without presence of estimation errors.

Results

Using 3

In Table 1 the first four moments and the critical values at level a of the simulated

distribution of /z, using B, are given for different 0-levels for a conventional test of 20, 50, and

80 items, and for a CAT In Table 2 the first four moments and the critical values at level a of

the simulated distributions of /: are given for different 0-levels for a conventional test of 20, 50,

and 80 items, and for a CAT.

P&P. Table 1 shows that, for the conventional test of 20 items, the mean and variance

of the sampling distribution of lz were different from 0 and 1 as expected under the standard

normal distribution. For longer tests (50 80 items), the first two moments of the distribution of

/, were closer to the 0 and 1. However, the distribution tended to be negatively skewed, at all test

lengths; for example, for the test with 80 items, the highest skewness observed was 0.36 for

= 2.0 and 1.5. The kurtosis tended to be slightly positive for all test lengths; for example

for the test of length 50, the kurtosis varied between 0.10 and 0.45 for B = 0.5 and 2.0,

2
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Table 1. Distributional characteristics of the simulated distribution of 1,, using 0.

- 10

critical value
mean variance skewness kurtosis 0.01 0.02 0.03 0.04 0.05

P&P 20 items
N(0,1) 0.16 0.77 -0.67 0.55 -2.25 -1.92 -1.73 -1.59 -1.46

= -2.0 0.16 0.56 -0.80 0.93 -1.98 -1.68 -1.47 -1.34 -1.24
-1.5 0.12 0.75 -0.75 0.92 -2.34 -1.97 -1.74 -1.59 -1.46
-1.0 0.12 0.88 -0.66 0.46 -2.55 -2.20 -1.94 -1.74 -1.59
-0.5 0.12 0.94 -0.61 0.40 -2.53 -2.15 -1.94 -1.76 -1.61
0.0 0.12 0.89 -0.69 0.58 -2.52 -2.16 -1.92 -1.77 -1.62
0.5 0.17 0.78 -0.62 0.40 -2.27 -1.94 -1.72 -1.56 -1.43
1.0 0.18 0.66 -0.68 0.52 -2.11 -1.77 -1.57 -1.41 -1.29
1.5 0.20 0.58 -0.73 0.41 -1.90 -1.64 -1.46 -1.33 -1.22
2.0 0.24 0.48 -0.85 0.75 -1.75 -1.45 -1.28 -1.16 -1.08

P&P 50 items
N(0,1) 0.09 0.86 -0.41 0.20 -2.32 -2.01 -1.80 -1.66 -1.54

= -2.0 0.09 0.54 -0.52 0.45 -1.86 -1.60 -1.43 -1.31 -1.23
-1.5 0.09 0.69 -0.43 0.27 -2.07 -1.77 -1.61 -1.49 -1.39
-1.0 0.08 0.87 -0.44 0.32 -2.43 -2.05 -1.82 -1.66 -1.54
-0.5 0.09 0.97 -0.41 0.10 -2.51 -2.17 -1.92 -1.76 -1.64
0.0 0.07 0.99 -0.42 0.22 -2.51 -2.20 -1.95 -1.80 -1.67
0.5 0.09 0.94 -0.38 0.15 -2.42 -2.10 -1.87 -1.72 -1.59
1.0 0.09 0.86 -0.37 0.13 -2.28 -2.01 -1.79 -1.65 -1.54
1.5 0.10 0.76 -0.43 0.28 -2.21 -1.88 -1.68 -1.54 -1.42
2.0 0.09 0.64 -0.46 0.33 -2.03 -1.74 -1.55 -1.43 -1.33

P&P 80 items
- N(0,1) 0.06 0.89 -0.32 0.16 -2.37 -2.04 -1.84 -1.68 -1.58

0 = -2.0 0.08 0.55 -0.36 0.17 -1.87 -1.59 -1.43 -1.32 -1.21
-1.5 0.07 0.71 -0.36 0.19 -2.10 -1.83 -1.67 -1.54 -1.42
-1.0 0.07 0.85 -0.35 0.04 -2.28 -1.97 -1.78 -1.63 -1.53
-0.5 0.06 0.97 -0.30 0.10 -2.45 -2.13 -1.91 -1.74 -1.63
0.0 0.07 1.01 -0.34 0.16 -2.49 -2.16 -1.92 -1.79 -1.68
0.5 0.08 0.96 -0.33 0.12 -2.47 -2.10 -1.90 -1.73 -1.63
1.0 0.08 0.90 -0.31 -0.01 -2.28 -2.01 -1.82 -1.67 -1.55
1.5 0.08 0.80 -0.33 0.14 -2.25 -1.95 -1.75 -1.58 -1.48
2.0 0.07 0.91 -0.34 0.27 -2.45 -2.05 -1.83 -1.67 -1.56

CAT
0 - N(0,1) 0.39 0.79 -0.20 0.03 -1.78 -1.51 -1.32 -1.22 -1.13
0 = -2.0 0.27 0.84 -0.36 0.06 -2.08 -1.77 -1.58 -1.44 -1.32

-1.5 0.36 0.84 -0.25 0.07 -1.93 -1.65 -1.48 -1.32 -1.21
-1.0 0.42 0.76 -0.17 -0.10 -1.70 -1.45 -1.27 -1.16 -1.07
-0.5 0.40 0.75 -0.16 -0.19 -1.66 -1.44 -1.27 -1.17 -1.08
0.0 0.40 0.77 -0.19 -0.11 -1.72 -1.48 -1.33 -1.21 -1.11

0.5 0.41 0.81 -0.18 -0.05 -1.72 -1.50 -1.34 -1.23 -1.13
1.0 0.38 0.83 -0.22 -0.10 -1.83 -1.60 -1.42 -1.29 -1.20
1.5 0.34 0.82 -0.30 -0.01 -1.97 -1.64 -1.45 -1.33 -1.22
2.0 0.32 0.78 -0.39 0.19 -1.99 -1.69 -1.48 -1.33 -1.21

3



Simulating the Null Distribution - 11

Figure 1. Critical values, at a = 0.05, of the simulated distribution of lz, using B.
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respectively. A positive kurtosis indicates a leptokurtic distribution, that is, a distribution with

heavier tails and a higher peak than the standard normal distribution. Table 1 also shows that for

different 0-levels the observed critical values were different. For example, for a test of 20 items,

the observed critical values at a = 0.01 varied between 2.55 and 1.75 for 0 = 1.0 and

2.0, respectively, whereas the critical value at a = 0.01 under the standard normal distribution

is 2.33. In Figure 1 the critical values of the distribution of /z, using 0, at a = 0.05, are plotted

against 0 for the conventional tests of 20, 50, and 80 items and a CAT These critical values

are compared with the critical value expected under the standard normal distribution, that is,

1.65. The distribution of /z for a CAT will be discussed below. Figure 1 shows that for longer

tests and for 1 < 0 < 1 the critical values observed in the simulated distribution were close

to 1.65. So, especially for large positive and large negative 0-values the critical values in the

simulated distribution were different from the expected critical value under the standard normal

distribution.

Table 2 shows that the mean and variance of the distribution of 1; were close to 0 and

1, respectively, for all 0-values and conventional tests of 20, 50 and 80 items. For example, for

a test of 50 items the mean of /: was 0.09 at 0 = 0.5 and 0 = 0.5, and 0.05 at 0 = 2.0,

and the variance was for all 0-values approximately 1. However, for all tests and across all

0-values the distribution tended to be negatively skewed; for a test of 20 items, and 0 = 0 the

skewness was 0.68. Also, the kurtosis tended to be positive; for example, a test of 80 items

and 0 = 0 the kurtosis was 0.16. Table 2 also shows that the critical values in the simulated

distribution were approximately equal across 0-levels. However, for smaller values of a the

critical values in the simulated distribution differed from the critical values of the standard

normal distribution. Moreover, for a < 0.04 the use of 1: resulted in a slightly conservative

classification of nonfitting response patterns; for example, for the standard normal distribution

the critical value at a = 0.01 is 2.33 and for the test of 50 items the critical value in the

simulated distribution of 1; vary from 2.60 to 2.43 at 0 = 1.0, and 0 = 1.5, respectively.

Figure 2 shows the critical values at a = 0.05 of the simulated distribution of 1: across 0-

levels for the three conventional tests and for a CAT. The results of the CAT will be discussed

below. Table 2 and Figure 2 both show that the critical values at a = 0.05 in the simulated

distribution are close to 1.65 as expected for the standard normal distribution; for example,

for the conventional test of 20 items the critical values at a = 0.05 in the simulated distribution

varied from 1.75 to 1.65 for 0 = 2.0 and 0 = 1.0, respectively.

CAT Environment. Table 1 shows that, for a CAT, the first two moments of the

distribution of /z are substantially different from 0 and 1 for all 0-levels; mean and variance

15
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Table 2. Distributional characteristics of the simulated distribution oft;.

- 13

critical value
mean variance skewness kurtosis 0.01 0.02 0.03 0.04 0.05

P&P 20 items
N(0,1) 0.13 0.97 -0.65 0.40 -2.53 -2.18 -1.97 -1.83 -1.67

0 = -2.0 0.09 0.98 -0.73 0.49 -2.68 -2.30 -2.01 -1.86 -1.75
-1.5 0.10 1.01 -0.70 0.55 -2.73 -2.28 -2.05 -1.88 -1.74
-1.0 0.11 1.00 -0.66 0.40 -2.72 -2.32 -2.07 -1.88 -1.73
-0.5 0.11 1.01 -0.61 0.36 -2.64 -2.26 -2.02 -1.83 -1.69
0.0 0.11 1.01 -0.68 0.51 -2.71 -2.30 -2.07 -1.88 -1.75
0.5 0.15 0.98 -0.61 0.27 -2.54 -2.20 -2.00 -1.80 -1.66
1.0 0.14 0.97 -0.67 0.37 -2.58 -2.25 -2.00 -1.82 -1.65
1.5 0.14 0.97 -0.71 0.25 -2.60 -2.19 -2.00 -1.84 -1.70
2.0 0.16 0.94 -0.77 0.39 -2.47 -2.16 -2.00 -1.82 -1.67

P&P 50 items
0 - N(0,1) 0.08 0.99 -0.41 0.13 -2.50 -2.17 -1.94 -1.79 -1.67

= -2.0 0.05 1.00 -0.50 0.25 -2.60 -2.27 -2.04 -1.89 -1.74
-1.5 0.07 0.98 -0.42 0.12 -2.43 -2.17 -1.96 -1.81 -1.68
-1.0 0.07 1.01 -0.43 0.27 -2.60 -2.21 -2.00 -1.82 -1.68
-0.5 0.09 1.01 -0.40 0.09 -2.59 -2.21 -1.97 -1.79 -1.67
0.0 0.07 1.02 -0.42 0.21 -2.55 -2.23 -1.99 -1.82 -1.70
0.5 0.09 1.01 -0.38 0.14 -2.52 -2.19 -1.95 -1.80 -1.65
1.0 0.07 1.01 -0.38 0.12 -2.52 -2.18 -1.98 -1.82 -1.70
1.5 0.08 1.01 -0.42 0.19 -2.56 -2.20 -1.97 -1.81 -1.67
2.0 0.06 1.01 -0.46 0.23 -2.57 -2.22 -2.02 -1.86 -1.72

P&P 80 items
N(0,1) 0.05 1.00 -0.32 0.10 -2.52 -2.18 -1.97 -1.79 -1.68

0 = -2.0 0.05 0.99 -0.36 0.04 -2.54 -2.21 -2.00 -1.83 -1.70
-1.5 0.05 0.99 -0.37 0.14 -2.55 -2.19 -1.98 -1.84 -1.69
-1.0 0.07 0.98 -0.35 0.02 -2.43 -2.13 -1.93 -1.76 -1.65
-0.5 0.06 1.01 -0.30 0.10 -2.49 -2.16 -1.94 -1.78 -1.66
0.0 0.06 1.02 -0.34 0.16 -2.50 -2.17 -1.93 -1.80 -1.69
0.5 0.07 1.00 -0.33 0.13 -2.52 -2.15 -1.93 -1.76 -1.65
1.0 0.08 1.00 -0.31 -0.02 -2.42 -2.14 -1.94 -1.78 -1.66
1.5 0.07 1.00 -0.33 0.10 -2.50 -2.18 -1.95 -1.79 -1.68
2.0 0.06 1.01 -0.33 0.17 -2.57 -2.19 -1.95 -1.79 -1.67

CAT
- N(0,1) 0.39 0.83 -0.23 0.10 -1.87 -1.56 -1.37 -1.27 -1.17
= -2.0 0.26 0.87 -0.39 0.14 -2.14 -1.84 -1.62 -1.48 -1.35

-1.5 0.36 0.86 -0.28 0.14 -1.98 -1.68 -1.50 -1.35 -1.23
-1.0 0.42 0.80 -0.19 -0.05 -1.77 -1.50 -1.32 -1.19 -1.10
-0.5 0.41 0.80 -0.17 -0.17 -1.72 -1.49 -1.34 -1.21 -1.12
0.0 0.40 0.79 -0.21 -0.06 -1.76 -1.54 -1.37 -1.23 -1.13
0.5 0.41 0.82 -0.20 -0.00 -1.77 -1.53 -1.37 -1.25 -1.15
1.0 0.38 0.85 -0.24 -0.04 -1.88 -1.64 -1.45 -1.32 -1.22
1.5 0.34 0.86 -0.33 0.06 -2.05 -1.68 -1.50 -1.36 -1.26
2.0 0.33 0.86 -0.43 0.29 -2.14 -1.82 -1.57 -1.42 -1.29
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Figure 2. Critical values, at a = 0.05, of the simulated distribution of Vz.
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fluctuated around 0.40, and 0.80, respectively. Skewness and kurtosis were also different from

0. The distribution was found to be negatively skewed, and the highest skewness observed was

0.39 for B = 2.0. The highest kurtosis was found for 0 = 0.5 and 2.0 where the kurtosis

was 0.19 and 0.19, respectively. Thus, the distribution of 1, using 0 was quite different from

the standard normal distribution. Table 1 and Figure 1 both show that the critical values in

the sampling distribution tended to be closer to 0 than expected under the standard normal

distribution for all 0 and a. For example, the critical value at a = 0.05 for 0 = 0, 5% of

the simulees obtained a 12 -value below 1.11. Thus, using lz < 1.65 will result in too few

simulees being classified as aberrant; that is, the decision rule will result in a conservative

classification of aberrant response behavior. Table 1 also shows that the critical values were

different across 0-levels. For example, for 0 = 0 the critical value at a --= 0.01 was 1.72

whereas the critical value for 0 = 2 was 1.99. When 0 was drawn from the standard normal

distribution, the critical values were also closer to 0 than expected; for example, the critical

value at a = 0.05 was 1.13.

Table 2 shows that for a CAT the mean and variance of 1; were quite different from 0

and 1, respectively; for example, at 0 = 0 the mean and variance are 0.40 and 0.79, respectively.

It also shows that the simulated distribution tended to be negatively skewed; the skewness

varied from 0.17 to 0.43 at 0 = 0.5 and 0 = 2.0, respectively. The kurtosis was less

systematically distributed; for 1.0 < 0 < 1.0 the kurtosis was slightly negative, for other

0-values positive kurtosis occurred. Figure 2 and Table 2 both show that the critical values in

the simulated distribution oft; were not in agreement with critical values of the standard normal

distribution. For example, for a = 0.05 the critical values in the simulated distribution varied

from 1.10 to 1.35 at 0 = 1.0 and 0 = 2.0, respectively.

Using 0

In Table 3 the first four moments and the critical values at level a of the simulated

distributions of lz, when true 0 was used, are given.

P&P. Table 3 shows that, for all conventional tests, the first two moments of the

distribution of lz were close to 0 and 1, as expected under the standard normal distribution.

However, the distributions are still negatively skewed and have positive kurtosis; for longer

tests (50 80 items) the observed skewness fluctuated around 0.35 and the kurtosis around

0.11. Table 3 also shows that the critical values were about the same across 0-levels. However,

the critical values tended to be slightly smaller than expected; for example the critical value

at a = 0.03 under the standard normal distribution is 1.88, and the values observed in the

18
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Table 3. Distributional characteristics of the simulated distribution of /z, using true 0.

critical value
mean variance skewness kurtosis 0.01 0.02 0.03 0.04 0.05

P&P 20 items
- N(0,1) 0.02 0.98 -0.66 0.43 -2.73 -2.32 -2.09 -1.93 -1.78
= -2.0 -0.01 0.98 -0.77 0.74 -2.78 -2.39 -2.16 -2.00 -1.85

-1.5 -0.00 1.03 -0.77 0.75 -2.87 -2.49 -2.12 -2.01 -1.86
-1.0 0.01 1.01 -0.67 0.41 -2.80 -2.42 -2.22 -1.99 -1.83
-0.5 0.01 1.01 -0.56 0.32 -2.75 -2.34 -2.11 -1.92 -1.79
0.0 -0.01 1.00 -0.63 0.50 -2.76 -2.41 -2.18 -1.99 -1.85
0.5 0.02 0.98 -0.63 0.36 -2.66 -2.34 -2.08 -1.92 -1.80
1.0 0.01 0.99 -0.70 0.38 -2.75 -2.36 -2.14 -1.95 -1.82
1.5 -0.00 0.99 -0.75 0.42 -2.73 -2.42 -2.17 -1.99 -1.85
2.0 0.01 0.97 -0.96 1.20 -2.90 -2.47 -2.20 -1.96 -1.81

P&P 50 items- N(0,1) 0.00 0.99 -0.42 0.10 -2.54 -2.25 -2.05 -1.89 -1.76
0 = -2.0 -0.02 1.02 -0.58 0.38 -2.76 -2.36 -2.13 -1.97 -1.85

-1.5 0.00 1.01 -0.51 0.24 -2.67 -2.32 -2.11 -1.92 -1.79
-1.0 -0.00 1.01 -0.47 0.30 -2.71 -2.34 -2.09 -1.90 -1.77
-0.5 0.01 1.02 -0.42 0.12 -2.63 -2.29 -2.10 -1.90 -1.77
0.0 -0.01 1.02 -0.40 0.19 -2.64 -2.32 -2.06 -1.90 -1.77
0.5 -0.00 1.02 -0.38 0.12 -2.63 -2.27 -2.03 -1.90 -1.77
1.0 -0.01 0.99 -0.39 0.07 -2.53 -2.17 -2.01 -1.90 -1.78
1.5 -0.01 1.02 -0.53 0.34 -2.73 -2.35 -2.13 -1.94 -1.81
2.0 -0.02 1.00 -0.61 0.42 -2.82 -2.39 -2.20 -2.01 -1.84

P&P 80 items
N(0,1) -0.01 1.01 -0.34 0.12 -2.60 -2.24 -2.04 -1.88 -1.75

9 = -2.0 -0.00 0.97 -0.48 0.30 -2.64 -2.27 -2.06 -1.90 -1.75
-1.5 -0.00 0.98 -0.43 0.11 -2.66 -2.27 -2.03 -1.87 -1.76
-1.0 -0.00 0.99 -0.39 0.13 -2.58 -2.23 -2.02 -1.86 -1.76
-0.5 -0.00 1.01 -0.32 0.11 -2.57 -2.23 -2.03 -1.87 -1.71
0.0 -0.00 1.02 -0.33 0.16 -2.58 -2.23 -2.00 -1.88 -1.76
0.5 0.00 '1.00 -0.33 0.13 -2.58 -2.22 -2.00 -1.85 -1.72
1.0 0.01 1.00 -0.32 0.00 -2.51 -2.24 -2.00 4.85 -1.72
1.5 -0.00 1.00 -0.41 0.21 -2.62 -2.29 -2.05 -1.89 -1.74
2.0 -0.01 1.01 -0.36 0.23 -2.68 -2.29 -2.04 -1.88 -1.75

CAT
0 ti N(0,1) 0.04 0.95 -0.23 0.06 -2.38 -2.10 -1.87 -1.72 -1.62

= -2.0 0.01 0.95 -0.36 0.05 -2.51 -2.16 -2.00 -1.83 -1.69
-1.5 0.01 0.99 -0.24 0.01 -2.47 -2.16 -1.95 -1.81 -1.70
-1.0 0.05 0.95 -0.24 0.05 -2.39 -2.09 -1.86 -1.74 -1.62
-0.5 0.05 0.94 -0.22 -0.03 -2.36 -2.06 -1.87 -1.71 -1.59
0.0 0.06 0.92 -0.28 0.10 -2.35 -2.03 -1.83 -1.67 -1.56
0.5 0.05 0.95 -0.20 0.01 -2.30 -2.03 -1.84 -1.72 -1.61
1.0 0.02 0.97 -0.28 0.04 -2.43 -2.13 -1.93 -1.81 -1.69
1.5 0.04 0.93 -0.32 0.02 -2.36 -2.10 -1.88 -1.73 -1.62
2.0 0.02 0.94 -0.40 0.16 -2.53 -2.21 -2.00 -1.84 -1.70
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Figure 3. Critical values, at a = 0.05, of the simulated distribution of /z, using 9.
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simulated distributions for k = 80 are close to 2.00. In Figure 3 the critical values at a = 0.05,

of the conventional tests and a CAT, are plotted against 0 and compared with the critical value

expected under the standard normal distribution, that is 1.65. Figure 3 shows that the critical

values are approximately the same across 0-levels and that the critical values using simulated

data have larger negative values than expected under the standard normal distribution.

CAT Environment. Using 0 to determine the distribution of lz resulted in a mean and

variance close to 0 and 1, as expected under the standard normal distribution. However, the

distribution tended to be negatively skewed, with the largest value of 0.40 for 0 = 2.0. For

o = 2.0 the highest kurtosis of 0.16 was obtained. It can be concluded that the distribution of

lz using true 0 was more in agreement with the standard normal distribution than when 0 was

.used. Similar conclusions pertain for the critical values. Table 3 and Figure 3 both show that

the critical values were close to 1.65 as expected under the standard normal distribution.

Study 2

In Study 1 it was shown that the critical values of the distribution of V; were close to

the critical values of the standard normal distribution for conventional tests. It was also shown

that for long conventional tests (50 80 items) and 1 < 0 < 1 the critical values of lz were

reasonably in agreement with the standard normal distribution. However, for extreme positive

and negative 0-levels, the critical values found in the simulated distribution were quite different

than expected under the standard normal distribution. An alternative to using critical values

from the theoretical distribution is to simulate a distribution for a person-fit statistic for each

simulee. In this second study, the distributions of to and lz are simulated for every simulee, and

the influence of estimation errors of 0 on the distributions of /0 and 12 were investigated in a

conventional testing and CAT environment.

With respect to CAT, it was shown in Study 1 that (1) the distributions of 12 and 1: did

not follow a standard normal distribution and (2) the distributions of lz and 1; differed across

0-levels when B was used; as a result, it is advisable to simulate the distribution conditional on

0 or 0. Another aspect of this second study was to investigate the influence of the stochastic

nature of the test design in CAT.

Method

P&P. Eight datasets of 400 model fitting response vectors fitting the 2PLM were

constructed with ai ti N(1, 0.2) and bt U(-3, 3); each dataset contained a test of different



Simulating the Null Distribution 19

test length, and each test was fixed for all simulees. Test length was k = 10, 20, 30, 40,

50, 60, 70, and, 80 items. True 9 was drawn from the standard normal distribution, where

each 9 -value represented a simulee responding to a test; 0 was estimated by 0 using, weighted

maximum likelihood estimation (Warm, 1989). For each simulee, the distributions of /0 and I.

were simulated in two different ways, both using parametric bootstrap techniques (Efron, 1982).

First, for each simulee it was assumed that 0 equalled 0. For example, suppose a simulee with

true parameter value 0 = 1.5 responded to a test and 0 = 1.2; then, for each simulee, 1, 000

replications were generated with 0 = 1.2. For each replicated response pattern the values of lo

and lz were determined to obtain the simulated distribution; 0 was used to compute the value

of /0 and lz. Then, the values of /0 and lz of the original response patterns, also computed using

0, were compared with the simulated distribution by determining the significance probability

under the sampled distribution. Second, it was assumed that the true parameter value was 0;

for example, for a simulee with true parameter 0 = 1.5 and 0 = 1.2, it was assumed that

the true parameter value was known and was 1.5. For each simulee, 1, 000 replications were

generated where the known true parameter value was set to O. Doing this, estimation errors in

are excluded from approximating the distribution of /0 and lz. For each replicated response

pattern the values of /0 and /z were determined using true 0 to obtain the simulated distribution.

Then, the values of /0 and lz of the original response patterns, also computed using true 0, were

compared with the simulated distribution by determining the significance probability under

the sampling distribution. Also, for each dataset the mean absolute bias was determined as

M AB = n E7 I0 0, where the sum is across all simulees.

Note, that for conventional tests the distribution of /0 and lz are equivalent; the

distribution is simulated conditional on 0 or 0, all items are the same, and therefore, for every

replication E (10) and var (10) are the same.

CAT. A dataset of 400 model fitting adaptive response patterns was constructed using

the item pool and procedure described in Study 1, where true 0 was drawn from the standard

normal distribution. The distributions of lo, lz, and 1; were simulated in two different ways, both

using parametric bootstrap methods. First, for each adaptive response vector these distributions

were simulated using a fixed test design (cf. Equation 10). For each simulee, 500 response

patterns were replicated where the test design was set to the observed test design. Thus, for

each simulee, the administered test was viewed as a conventional test, and this conventional

test was replicated 500 times, conditional on the value of 0 or 0; the values of /0 and lz were

computed for each replicated response pattern to obtain the distribution given 0 or 0 and d,

whereas the values of 1: were only determined using 0. Then, the significance probability was

22
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determined by comparing the values of lo, lz, and l; of the original response pattern with the

simulated distribution.

Second, the distributions of /0, lz, and l; were simulated using the stochastic test design

(cf. Equation 11). For each simulee, an adaptive test was replicated 500 times, where true 0 or

B was used; the values of /0 and lz were computed using 0 or B, whereas the values of 1; were

only computed using B. For each simulee, 500 adaptive response patterns given B or 0 were

replicated according to the CAT-procedure described in Study 1; that is, P (0) or P (0) was

used to generate responses to items. This procedure was repeated until SE (0) < 0.25. Thus,

for each simulee 500 adaptive response patterns were simulated conditional on the value of 0

or B. For each replicated response pattern the values of /0, lz, and 1; were determined to obtain

the simulated distribution. Then, the values of /0, 1,, and 1; of the original response patterns

were compared with the simulated distribution by determining the significance probabilities.

When the replications were generated using O all lo, 1,, and /; values were determined by using

B in Equations 2 and 3. When the replications were replicated using 0, all 10 and lz values

were computed using 0 in order to determine a distribution without the presence of estimation

errors. Although in practice 0 is unknown, determining the distribution based on 0 allow us to

investigate the influence of B on the distribution of 10 and lz.

Note, that for the fixed design the distribution of l0, 1Z, and 1: are equivalent; the

distribution is simulated conditional on 0 or b, all items are the same due to the fixed test design,

and therefore, for every replication E (10) and var (/0) are the same.

Results

P&P. In Table 4 the distribution of the significance probabilities of lz are given, using 0

or B to determine the values of lz. To illustrate the distribution of the significance probabilities,

ten intervals are considered, each of length 0.10. The expected proportion of simulees with

a significance probability in a particular interval was 0.10; for example, it was expected that

10% of the simulees have /z-values with 0.4 < p* < 0.5. To test whether the distribution of

significance probabilities approached the uniform distribution Pearson's chi-squared tests, X2,

can be calculated, with E (X2) = 9. Table 4 shows that, for all test lengths, the distribution of

significance probabilities are uniformly distributed. However, in practice 0 is unknown and as

an alternative B is used. Table 4 shows that, when B was used, for very short tests, containing

only 10 items, the significance probabilities are not uniformly distributed (X2 = 24.4, p-

value= 0.04). For tests containing 20 items or more, the distribution of lz, using O, is more

in agreement with the uniform distribution. Table 4 also shows that, in general, for small values

23
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of the MAB, the distribution can be approximated using simulation methods based on3. For

example, for the short test of 10 items and using 3, MAB = 0.64 and X2 = 24.4 whereas for

the test of 80 items MAB = 0.26 and X2 = 7.2.

CAT. In Table 5 the distribution of the significance probabilities of lo, lz, and l; using

a fixed and a stochastic design are given using 0 and B. Table 5 shows that, using 0 and

using a fixed or stochastic test design resulted in an approximately uniform distribution of the

significance probabilities for both /0 and lz. However, conditioning on B and using a fixed or

stochastic test design resulted in an inappropriate approximation of the distribution of 10, lz and

q. For example, using 3 and a stochastic test design with lz as fit index resulted in X2 = 65.7,

which is highly significant. Especially the probabilities in the left tail were much too small.

Using a stochastic design, only 4.3% of the simulees attained a 4-value with 0 < p* < 0.1. In

practice, using 0 and a stochastic test design to simulate the distribution performs better than

a using fixed test design. That is, the values of X2 are lower when the stochastic test design

was used compared with using a fixed design; for to the values of X2 for a fixed and stochastic

test design were 81.7 and 34.8, respectively, for lz 81.7 and 65.7, and for 1; 81.7 and 65.7,

respectively.

Study 3

In Study 1 it was shown that the critical value at a = 0.05 of the distribution of 1; was

close to 1.65. This third study was designed to compare the detection rate of l= with lz for

several types of aberrant response behavior, when it is assumed that the theoretical distribution

is standard normal.

Method

Several datasets containing 200 nonfitting response patterns were constructed, with

three types of aberrant response behavior and three different conventional tests; tests containing

10, 20 and 50 items. The first type was guessing on all the items in a test. This guessing

model mimics the type of answering behavior studied empirically by Van den Brink (1977).

He described examinees who took a multiple choice exam without preparation, and the only

purpose of taking the exam was to become familiar with the type of questions that would be

asked. Because returning an almost completely blank answering sheet may focus attention on

an examinee's ignorance, the examinee would randomly guess the correct answer on almost all

items in the test. "Guessing" simulees were simulated by randomly guessing the correct answer
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on each item with a probability of 0.2 (assuming a test with five alternatives per item).

Second, response vectors with a two-dimensional 0 parameter were simulated: a

simulee had during the first half of the test another ability value than during the second half to

respond to the items. Carelessness, fumbling or memorization of some items can be the cause of

non-invariant abilities. Two datasets containing response vectors with a two-dimensional ability

parameter were simulated by drawing two ability values, 01 and 02, from a bivariate standard

normal distribution; the correlation between the two values was modeled by the parameter p.

Thus, during the first half of the test P (01) was used and during the second half P (02) was

used to simulate the responses to the items. The values p = 0.8 and p = 0.6 were used here to

simulate the response patterns.

The third type of aberrant response vectors simulated were vectors with violations

against local stochastic independence between the items of the test. When previous items

provide new insights that are useful for answering the next item, or when the process of

answering the items is exhausting, the assumption of local independence between the items

may be violated. Four datasets were constructed with violations of the local independence

assumption. These response vectors were simulated according to a model proposed by

Jannarone (1986). Appendix B describes the model in detail. Using this model, the probability

of correctly answering an item is now determined by the item parameters a and b, the person

parameter 0 and the association parameter S. When b = 0 the model equals the 2PLM.

Compared to the 2PLM, positive values of b result in a higher probability of a correct response,

and negative values of S result in a lower probability of correctly answering an item. The values

S = 2, 1, 1, and 2 were used to simulate these nonfitting response patterns.

The detection rate of a statistic is defined here as the proportion of detected nonfitting

response patterns. A response vector was classified as nonfitting the 2PLM when the observed

value of 1 z or /: was below the critical value at level a = 0.05 of the standard normal distribution,

that is -1.65.

For every dataset, the mean absolute bias, MAB, was determined and the mean bias

was calculated as MB = 71,Eni (ij 0). These variables were determined to investigate the

trade off between bias and detection rate.

Results

In Table 6 the detection rates of lz and 1; are given for three types of aberrant response

behavior, for conventional tests of 10, 20, and 50 items. Table 6 shows that for all types of

aberrance and all tests the detection rate of 1: was slightly higher than the detection rate of

27



Simulating the Null Distribution - 25

Table 6. Detection rates for several types of aberrant response behavior, for P&P-tests of length
10, 20 and 50, using 12 < -1.65 and l; < -1.65.

k=10 k=20 k=50
MAB lz 1; MAB lz 1; MAB 1, 1;

guessing 2.27 0.12 0.27 2.25 0.45 0.65 2.04 0.85 0.96
p = 0.6 0.74 0.05 0.06 0.60 0.04 0.07 0.42 0.06 0.07

0.8 0.83 0.03 0.07 0.53 0.07 0.08 0.38 0.04 0.06
= -2.0 0.91 0.05 0.07 0.83 0.07 0.09 0.71 0.18 0.20

-1.0 0.69 0.03 0.05 0.55 0.06 0.09 0.46 0.04 0.06
1.0 1.09 0.01 0.04 0.79 0.03 0.05 0.58 0.04 0.06
2.0 1.53 0.02 0.03 1.41 0.05 0.09 1.23 0.06 0.07
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lz. For example, for simulees guessing on all items of a conventional test of length 20, the

detection rates for /: and lz were 0.65 and 0.45, respectively. Table 6 also shows that for

guessing the detection rates were reasonably high, whereas for violations of local independence

and unidimensionality of 0, the detection rates for both lz and 1: were low for all test lengths.

For example, for 50 items and guessing the detection rates were 0.85 and 0.96 for lz and l; ,

respectively, whereas for violation of unidimensionality and p = 0.6 the detection rates were

0.06 and 0.07 for lz and 1:, respectively. Table 6 also shows that the relation between MAB and

detection rate was unclear. For example, for guessing on all items on the 50 items test, the MAB

was high (2.04) and the detection rates were also high (0.85 and 0.96 for lz and /:, respectively).

However, for violation of local independence and 6 = 2.0 and 10 items, the MAB was rather

high (1.53) but the detection rates were low (0.02 and 0.03 for 1z and 1:, respectively).

Discussion

To detect examinees with inappropriate test scores, the use of person-fit statistics

was investigated in this study. In particular the distribution using theoretical and simulated

distributions, and using 0 and B in a conventional and CAT environment were explored. In Study

1 the empirical distributions of lz and 1; were compared with the theoretical distribution (i.e.,

standard normal) for conventional and adaptive tests. Results showed that, for conventional

tests, the distribution of lz differed across 0-levels. However, for 0-values between 1 and 1

and long tests (50 80 items), the critical values at a = 0.05 of the simulated distribution

(using b to determine the values of lz) were close to the expected 1.65 (see Reise, 1995, for

similar findings in the context of personality assessment). The critical values at a = 0.05 of the

empirical distribution of 1: for conventional tests and for all 0-values were found to be close to

1.65, as expected under the standard normal distribution. With respect to CAT, results showed

that the distribution of both lz and 1: differed across 0-levels and that the critical values of the

theoretical distribution differed substantial from the critical values of the empirical distributions

using B.

In Study 2, simulating the distributions of /0, lz, and lZ to create an approximation of the

empirical distribution for conventional and adaptive tests was investigated. In a conventional

testing context, especially for large positive and large negative 0-values, simulating a sampling

distribution of lz for every examinee based on B resulted in an appropriate approximation of the

distribution. With respect to CAT, simulating the distributions of to lz, and 1: was problematic.

For all three statistics, the left tails of the simulated distribution were inaccurate; for example,
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using a stochastic test design to simulate the distribution of /0 for every simulee resulted in only

5.8% of the simulees attaining a value of to in the left 10% area of the distribution.

In Study 3 the detection rate of lz and 1: to detect nonfitting response patterns was

investigated in a conventional testing context. Results showed that 1: performed slightly better

than lz for short tests. For long tests the differences in detection rates between lz and 1;

were smaller because for long tests the critical values of the empirical distribution of lz were

reasonably in agreement with the critical values of the standard normal distribution (see also

Study 1).

A possible solution for the problems in simulating the sampling distribution may be

to use Bayesian methods to 'lift up' the tails of the distribution. Other alternatives that may be

considered in future research are using less biased estimators of 0, or using statistics that are

less dependent on B.
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Appendix A. Derivation of /:

Snijders (1998) derived the asymptotic distribution of statistics which are linear in the

item responses, and in which 0 was replaced by an estimate. Statistics are linear in the item

response when the statistic can be written as

E xiwi (0) wo (0), (13)
i=i

where wi (0) are suitable functions. Snijders used in his paper the centered form

Wn (0) = (xi (0)) wi (0) . (14)

For example, Wn = /0 E (10) and wi = In P results in the centered version of /0. The

only restriction on the estimator B was, that 0 satisfied an equation of the form

n

r0 (e) + E Pi (0)) ri (0) = 0. (15)

For example, for the maximum likelihood estimator and the 2PLM, r0 = 0 and ri (b) = a,

for i = , n.

The estimate satisfying

ti

where

J (0)
0,

21 (0) 2=1 Pi[xl (b)1 (b) [1 (B)]

(16)

pz/2

I = E
i=i (0) [1 Pi (0) ]

(17)

(b) Pin (0 , andJ (0) = E (18)
Pi (0 [1 Pi (0)}

Pi' (0) = aPi (0) me, pi" (0) = a2 (0) (19)
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is the Warm estimator. Therefore, after some algebra, for the 2PLM, r, = a, and

t (0 [1 P, (b)] [1 2P, (0]
ro

2 (i9) [1 Pt (01

Snijders showed that the expected value of Wn (b) can be approximated by

and the variance by

where

(20)

E ( 1 / 1 7 , , (b)) c (b) ro (b) , (21)

var (144, (0) nr;, (b) , (22)

n1 En (b) (b) (b)] '
(23)

(b) = wi (b) cn (e) Ti (b) , and (24)

(e)
=

(9) wi (b)
(25)

t ri (b)i=1

He also showed that the asymptotic distribution of

Wn + Cn (9) ro (b)

VTITn

(26)

is standard normal. Note that the value of cn (b) ro (b) does not depend directly on the patterns

of item responses, but only on B.
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Appendix B. Modeling Local Dependence

Let xi, a realization of Xi, be the response to item i. One of the models Jannarone

(1986) presented was a conjunctive Rasch-model; local dependence between two subsequent

items can be modeled by

P (Xi = xi, Xi+1 = 10) =
exp (0bj )+xi (0ei,i+1 )1

-±"11-1-exp[Obij+exp[Obi+31+exP (9bi)-1-(0ei,i+1 )1
i=i

(27)

where ki,i+1 is a parameter modeling association between items i and i + 1. This model can be

generalized to a conjunctive 2PLM, which can be written as

i+i
P (Xi = xi, Xi+1 = xi+i I 9) « exp E xja; (0 (0 , (28)

where -y and are parameters modeling association between items.

In this study, the following model was used to simulated response vectors with local

independence between all subsequent items was

i+i
P (Xi = = xi+i 0) a exp E xia; (9 b;) + , (29)

i=i

where is a parameter modeling association between items. The four possible realizations

of (Xi, Xt..f.i) have the following probabilities

P (Xi = 0, Xi±i = 0) cx 1,

P (Xi = 1, Xi+i =0) a exp [ai (9 N.)] ,

P (Xi = 0, Xi±i = 1) oc exp [ai+i (0 bi+i)] , and

P (Xi = 1, = 1) oc exp [ai (0 bi) + ai+i (9 bi+i) + 8i,i4-11

The conditional probability of a correct response to item i + 1 given a correct response to item

i can be written as

Ppc,=1,xi+i=ile)
P (Xi+1 = 1IXi = 1,9) = P(Xi.1,Xj+1=018)+P(Xi=1,Xi+1=1(0 )

exp[ai(0--bi)+cii+1
exp(ai (8bi)) +exp[ai (0bi)+cii+

33
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and the probability of a correct response to item i +1 given an incorrect response to the previous

item can be written as

exp[ai+I(O))P (Xi+1 = 11Xi = 0, 8) = 1+expt0.+I(9bi+1bi+1)1
(31)

which is the 2PLM. The conditional probabilities in Equation 30 and the 2PLM were used to

simulate the responses to the items when the items are local stochastic dependent.
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